
Laser Arcade Machine
Final Report

SDMAY22-24

Client
Joseph Kenkel

Advisor
Dr. Neihart

Team Members
Joseph Kenkel

Ashley Robertson

Jonah Stoffer

Mark Kavars

Tyler Beveridge

Morgan Luecht

Zack Larson

1

Executive Summary
Development Standards & Practices Used
(ANSI/ANS 10.3-1995 Standard for Documentation of Computer
Software);(ISO/IEC/IEEE 26514)

IEEE 2030.2.1-2019 - IEEE Guide for Design, Operation, and Maintenance of Battery
Energy Storage Systems, both Stationary and Mobile, and Applications Integrated with
Electric Power Systems

Summary of Requirements
● Backend server with database
● Multi-platform app development framework
● Blaster

○ Batteries
○ IR emitter
○ LED visuals

● Target
○ IR receiver
○ LED visuals

Applicable Courses from Iowa State University Curriculum

● CPR E 288: Embedded Systems I: Introduction
● CPR E 388: Embedded Systems II: Mobile Platforms
● E E 201: Electric Circuits
● E E 230: Electronic Circuits and Systems
● E E 285: Problem Solving Methods and Tools for Electrical Engineering
● E E 321: Communication Systems I
● E E 333: Electronic Systems Design
● S E 319: Construction of User Interfaces

New Skills/Knowledge acquired that was not taught in courses

● IR Protocol for sending and receiving data.
● Reading Datasheets of components

○ Deciphering Graphs
● Calculating Steradian and power loss with time
● Proper battery management

2

Table of Contents
1 The Team 4

1.1 Team Members 4
1.2 Required Skill Sets 4
1.3 Skill Sets Covered by Team 4
1.4 Project Management 5
1.5 Initial Project Management Roles 5

2 Introduction 5
2.1 Problem Statement 5
2.2 Requirements & Constraints 5

2.2.1 Requirements 5
2.2.2 Constraints 6

2.3 Engineering Standards 7
2.4 Intended Users and Uses 7

3. Project Plan 7
3.1 Project Proposed Milestones, Metrics, and Evaluation Criteria 7

3.1.1 Evaluation Criteria 7
3.1.1.1 Software 7
3.1.1.2 Hardware 7

3.2 Risks and Risk Management / Mitigation 8
3.2.1 Software 8
3.2.2 Hardware 8

4. Design 8
4.1 Design Context 8

4.1.1 Broader Context 8
4.1.2 User Needs 8
4.1.3 Prior Work/Solutions 9
4.1.4 Technical Complexity 9

4.2 Initial Design Exploration 10
4.2.1 Initial Design Decisions 10

4.3 Initial Design 10
4.3.1 Design Visual and Description 11

4.3.1.1 Blaster 11
4.3.1.2 Target 12
4.3.1.3 Software 13

4.3.2 Functionality 13

3

4.3.2.1 Blaster 13
4.3.2.2 Target 14

4.4 Technology Considerations 14

5 Implementation 14
5.1 Target Implementation 15

5.1.1 Hardware Implementation 15
5.1.1.1 Battery and Power 15
5.1.1.2 IR Receiver 16
5.1.1.3 Player Indication 16

5.1.2 Mechanical Implementation 17
5.1.2.1 3D Model Design 17
5.1.2.2 PCB Layout Design 18

5.2 Blaster Implementation 19
5.2.1 Hardware Implementation 19

5.2.1.1 Teensy Microcontroller: 20
5.2.1.2 Power: 20
5.2.1.3 Limit Switches 21
5.2.1.4 IR Emitter 21
5.2.1.5 Ammo Indication 21

5.2.2 Mechanical Implementation 22
5.2.2.1 3D Model Design 22
5.2.2.2 PCB Layout Design
The following photo is the final PCB layout for the project. 23

5.2.3 Blaster Software Implementation 23
5.3 Software Implementation: 24

6 Testing 25
6.1 Integration Testing 25

6.1.1 Target Testing 25
6.1.2 Blaster Testing 25
6.1.3 Software Testing 26

6.2 System Testing 26

7 Conclusion 27

8 Appendices 28
8.1 Operation Manual 28
8.2 Initial Versions 30
8.3 Other Considerations 31

4

1 The Team

1.1 Team Members

Electrical Engineering

Joseph Kenkel
Ashley Robertson
Jonah Stoffer
Marcus Kavars

Software Engineering

Tyler Beveridge
Morgan Luecht
Zack Larson

1.2 Required Skill Sets
● PCB Design

○ At a minimum every target and blaster is going to need a Printed Circuit
Board (PCB) to connect all of the hardware involved for the individual
topics. On top of this, there will likely need to be a pcb

● Wireless Communication
○ Wireless communication will be important for our hardware to interact with

each other from greater distances
● Sensor Signal Manipulation

○ We must be able to take the information gathered from our signal and get
it to a place that our app can receive and process the information.

● Front End development skills
○ Use known languages to develop phone/ web applications

● Backend Development Skills
○ Develop app that is able to pull data from a piece of hardware to

communicate scores to players
○ Store scoring data in database

1.3 Skill Sets Covered by Team
PCB Design

- Jonah Stoffer, Ashley Robertson
Wireless Communication

- Joseph Kenkel
Microcontroller Development

- Mark
Front end Development

- Morgan

5

Back end Development
- Zack

Stack Development
- Tyler

1.4 Project Management
Scrum and other principles within Agile methodologies to produce an effective and
efficient project timeline.

1.5 Initial Project Management Roles
Team Leader: Joe Kenkel
Laser Generation Lead / General Hardware Lead: Jonah Stoffer
Backend Development Lead: Zack Larson

2 Introduction

2.1 Problem Statement
Laser arcades are entertaining to a wide range of people and demographics. Currently if
someone wishes to shoot lasers at targets they need to go to a specific location that
hosts that sort of entertainment. We intend to develop a mock system that will
demonstrate the possibilities of a portable laser arcade machine.

Ideally the hosts of this portable laser arcade would be able to set targets around a
room, turn on the system, and pass out laser blasters. The users would utilize an app
on a tablet that provides a UI for the system and controls the game.

2.2 Requirements & Constraints
2.2.1 Requirements

2.2.1.1 Software

● The backend is hosted on a server on a Springboot application
○ Capability to connect, send, and receive data with the front end app
○ Capability to connect to the raspberry pi and receive data from it

● The database should hold key player stats and info
○ Capability to connect to the backend in order to transfer the player’s data

6

to the front end to display the players current stats/score to them
○ Capability to automatically update and refresh player’s score
○ Secure and reliable database that we can only access

● A multi-platform app development framework
○ Capability to compile to different operating systems
○ Work on android tablets that will go with the system

2.2.1.2 Hardware

● Blaster
○ Power

■ Battery Powered to allow portability
○ Emitter

■ IR Transmitter
○ Visuals

■ shots/ammo left
■ color denote player
■ Spring loaded chamber to reload
■ Denote when fired

● Targets
○ Targets

■ 2-4 targets
● To be placed 10-20 feet away from blaster

■ Varying in size
● Area of 16 cm2

■ Receiver IR
● Identify each blaster

■ Visuals
● LED denote

○ When to shoot
○ When hit
○ Which blaster hit it

2.2.2 Constraints
● Budget

○ $1000 - prototyping
○ $200 - Final Product

● Time
○ 10 weeks of design and planning
○ 15 weeks of development

7

○ Request and receive specific parts for the project in a timely manner
● Scope

○ Mock up of the system
■ Future development could turn this into a marketable product
■ The entire system including the laser blaster, targets, and controller

should be extremely portable
● Plan on having a case to store the system for easy transport

2.3 Engineering Standards
(ANSI/ANS 10.3-1995 Standard for Documentation of Computer
Software);(ISO/IEC/IEEE 26514)

IEEE 2030.2.1-2019 - IEEE Guide for Design, Operation, and Maintenance of Battery
Energy Storage Systems, both Stationary and Mobile, and Applications Integrated with
Electric Power Systems

2.4 Intended Users and Uses
● Mock project to demonstrate capability of this sort of system
● Intended use is to determine interest and marketability
● Find potential investors or buyers

3. Project Plan

3.1 Project Proposed Milestones, Metrics, and Evaluation Criteria

3.1.1 Evaluation Criteria

3.1.1.1 Software
● Results of using application features with test data is successful
● Number of bugs found in code/ Number of refactored commits to Git
● Peer and Faculty Advisor review of UI

3.1.1.2 Hardware

● Finished pcb for the target should be under 16 𝑖𝑛2

● The target will have an 8 in tolerance from the center to register a hit.
● PCB schematic and layout are peer reviewed

8

3.2 Risks and Risk Management / Mitigation
● Disconnect between the hardware and software

3.2.1 Software
● Running into issues connecting the frontend and backend of application
● Running into issues connecting the application to the raspberry pi and hardware

system
● Login data security
● Management risks (no real leader established)
● Schedule Risk/Technical Risk(Never worked with some of the things)

3.2.2 Hardware
● Difficulty finding parts or parts running out of stock when we try to order them.
● Possible issues when we connect system to interface with the software and app
● Possible issues when we begin to actually use the laser
● Lithium Batteries exploding

4. Design

4.1 Design Context

4.1.1 Broader Context
The design problem that we are tackling, is in a world where laser arcades are
stationary at sparse locales. We want this design to assist college students as well as
family households in their efforts to entertain themselves and others in times of
boredom. College students would find a decent price point product that would be able to
entertain large groups of people at once. Families would be able to entertain children
and guests without requiring significant setup. This project would fill their need for easy
and simple entertainment.

4.1.2 User Needs
A household (consisting of parents and kids / group of friends) needs to be able to set
up their own laser arcade without an internet requirement to entertain kids or a party.

College students need to be able to bring an IR blaster and targets to dorm rooms or
common areas to entertain themselves at a low cost.

9

4.1.3 Prior Work/Solutions
The main inspiration for this project came from a laser arcade solution found at Bass
Pro shops. At these locations targets are placed in a “hunting” environment with targets
like animals, cabin parts, and misc small items placed around. Each player has a fake
hunting rifle that probably shoots IR light. When shooting these targets effects occur on
hit in the environment which add to the enjoyment of the arcade.

A product that could be considered similar are the video game variety of shooting
arcades. One that specifically has some overlap is the switch party game with a speed
drawing mini game. In that game players hold the controller in a specific “holstered”
direction and on the start sound quickly point the controller up and shoot.

Pros of our product
● Our product will be easily portable unlike Bass Pro Shop’s larger stationary

arcade.
● Our product will be more tactile with a physical laser blaster and physical target

that is better than just shooting targets on a screen as a mini game.

Cons of our product
● The advanced effects in the environment that Bass Pro Shop has is much better

than what we plan to do.
● Our product will not be set up to shoot towards other players like the switch mini

game or laser tag games in general.
● You can not see where you hit.

4.1.4 Technical Complexity
This project is of sufficient technical complexity mainly due to the components required
and the connections needed between those components. Below is the list of
components of this project:

1. IR emitter (Blaster)
2. IR receiver (Target)
3. Target microcontroller
4. Blaster microcontroller
5. Mobile android application (frontend/backend)
6. Raspberry PI backend server
7. Aesthetic Cases for the blaster and targets (3d printing)

Connections required
1. The IR receiver connected to the microcontroller and decoded

10

2. The microcontrollers bluetooth connected to the Raspberry PI
3. Mobile application wifi connected to the Raspberry PI
4. Frontend of mobile application to the backend of the mobile application
5. IR emitter connected to the IR receiver through IR light

The IR requirements for this project match the current solutions like Bass Pro Shop.
Connecting an app through wifi and microcontrollers to bluetooth exceeds solutions like
Bass Pro Shop or similar video game solutions.

4.2 Initial Design Exploration

4.2.1 Initial Design Decisions
One design decision that we made was to use IR emitters and receivers to handle the
shooting of the targets. On these we need to determine and obtain microcontrollers that
would read Pulse Wave Modulated signals from the blaster and send those to the
central controller.

A second design decision we made was utilizing a Raspberry PI for the central control
of the game system as well as housing the backend for the system and app. The PI is a
powerful enough mini computer to handle the computing power of both requirements
and has built in wifi routing capabilities and bluetooth connectivity.

A third design decision we made was to use React Native for the native application.
React Native is a multiplatform javascript framework for developing native apps and
provides HTML like UI development.

A fourth design decision we have yet to make is the exact emitter and receivers to use.
The emitter will determine what receivers we can use through its PWM. Additionally, we
have to watch out for stock shortages that may require us to use components that are
less desirable.

4.3 Initial Design
This section of the document will go over in detail the design plans that were created
during EE 491. This section will also talk about some of the design changes that were
made during the implementation phase. For a more detailed discussion on the technical
changes that were made to the design, refer to the implementation section.

11

4.3.1 Design Visual and Description

4.3.1.1 Blaster

Figure 1: Blaster Visual

This was the initial sketch for the blaster of the project. As you can see in the original
design, it had quite a realistic design that looked too realistic. The original plan was to
have the battery in the handle of the model, the indicators on the top back of the model,
teensy encased in the middle, and the IR emitter in the front of the barrel. The layout of
all of these components stayed the same. The biggest change that was made for this
project was the 3D model design. It was heavily modified to clearly resemble a toy to
make sure that it cannot be easily mistaken for a real gun. The final design for this can
be seen in the implementation section of the report.

12

4.3.1.2 Target

Figure 2: Target Initial Design Visual

Our initial design had the IR Receiver. We had wanted a range of target sizes as well.
The idea for the shape of the target to be to not matter as much as long as the circuitry
and battery would fit. We also planned to use RGB LEDs so that all of the LEDs would
light the player’s color. Our design from this semester has changed a few aspects of
what we initially planned. The first thing we decided to change was that there would only
be one size of target. This was because we decided that the receiver itself was not
going to be anymore difficult to hit with the reduced size 3D printed casing. It was also
decided that the RGB LEDs would be better off as static red and blue LEDs where they
represent player one and two respectively so that we could have a game mode that
allowed both players to hit the target. For the shape of the target we kept it similar to
how we initially wanted it but imagined but was squared off the side sections to give
more room on the inside of the case. The last change from the initial design was that we
initially wanted the targets to be in a brighter color but when manufacturing them we
chose to use the black filament because we only had enough red and blue filament for
the blasters. This caused us to use filament that was what we had the most of when
printing the cases to keep them all consistent.

13

4.3.1.3 Software

Figure 3: Application screen layouts

The UI for the application follows concepts from other multiplayer arcade style games.
Most of the design (pictured above) matched nearly one to one with the final product
minus some skipped screens and reduced game modes. For the structure of the
bluetooth listener and server the only big change was the removal of websockets due to
attempts being unable to make them communicate properly.

4.3.2 Functionality

4.3.2.1 Blaster
Last semester, we stated we were going to use a rechargeable lithium ion battery to
power the blaster. This is no longer true. Because the battery would cost a lot of money,
would be harder to implement, and was unnecessary, we instead decided to use
replaceable 9V batteries. This battery powers the main processor for the blaster, a

14

Teensy LC. The Teensy would control the IR LED, some normal LEDs to indicate
ammo, as well as a trigger and a reload button. Unlike the target, the blaster doesn’t
communicate to any other part of the system besides the target using a PWM wave. It
doesn’t need to have a bluetooth connection to the Pi, and doesn’t need any information
from anything else. It essentially acts like a fancy TV remote, sending IR waves to the
target to interact with the system.

4.3.2.2 Target
Similarly to the blaster, we decided to use a 9V battery instead of a lithium ion battery to
power the target. This will then power a Teensy LC microcontroller which controls the
rest of the electrical components within the device. The target has RGB leds on the
outside of the case that displays a variety of information to the user. When the target is
ready to be shot by the user, the LEDs will shine white. Once the receiver receives a
PWM signal from either blaster, the Teensy LC will detect which player shot the target
and change the LEDs the color of the player who hit the target first. For any data that
the blaster needs to either receive or transmit, it will do this through the bluetooth
module that is connected via the Teensy LC module.

4.4 Technology Considerations
The IR beams are less precise than visible lasers. By choosing IR, you can not see
where the shot landed and adjust your aim accordingly. Without the lazer, you can not
shoot as far and the beamwidth is much larger causing the receiver to falsely trigger.
On the other hand, we choose the IR because it is way less likely to blinde someone. In
order to help deal with the issues caused by the large beamwidth, we chose an emitter
with a low beam angle to make the range of the beam as small as possible.

We decided to wireless communicate from one board to another. This adds a layer of
complexity over wired communication but also more freedom on where to put the target.

5 Implementation
In the previous semester we designed our systems, set out all of the requirements that
we needed for system, got many of the key components working with each other (i.e:
successfully created a bluetooth connection with the bluetooth module, successfully
sent and received messages between the infrared emitter and receiver, tune the current
of the infrared emitter correctly so that it met our specifications without causing
unnecessary issues, etc). This semester was spent caring out those designs and plans.

15

5.1 Target Implementation

5.1.1 Hardware Implementation

Figure 4: Target Schematic

Using the specifications of the infrared emitter and the correct bluetooth module we
created a schematic for the target system of our game. The intention of this circuit is for
the player indicator LEDs to light up once the infrared receiver detects either the first or
second player’s encoded

5.1.1.1 Battery and Power
The target is powered by a 9-Volt battery which leads into the switch to turn the system
on and off. The 9V line is then fed into a DC-to-DC converter that then drops the 9V to
5V. This is used to power the microcontroller that we chose for this project (Teensy LC).
The bluetooth module is powered by the Teensy’s 3.3V output, as well as connected to
receiving and transmitting pins on the Teensy. This allows for bluetooth connection
between the targets and the Raspberry Pi that is hosting the server. This connection is

16

how the target knows when to start up and enables the game to keep track of which
player hit which target.

5.1.1.2 IR Receiver
The infrared receiver is also powered by the Teensy’s 3.3V out and has its signal output
pin routed to an analog pin of the Teensy. The receiver that we chose demodulates a
message that it receives. Because of this, it only reads signals when they are being
frequency modulated by 38 kHz (this also allows the receiver better protection against
picking up random noise, reflections and ambient infrared light). The player one and two
codes that are being sent by the receiver were chosen to be the rewind and fast-forward
buttons on a remote standard remote control. This was a decision based around gaining
a better way to troubleshoot both the target and blaster systems, but also serves as the
reason that we used the NEC IR transmission protocol when sending messages. This
standard uses a 9 ms pulse burst followed by a 4.5 ms space as a 13.5 ms start
sequence. After that, a logical '0' is a 562.5 µs pulse burst followed by a 562.5µs
space, with a total transmit time of 1.125ms and the logical '1' is a 562.5µs pulse burst
followed by a 1.6875ms space, with a total transmit time of 2.25ms.

5.1.1.3 Player Indication
Once a signal has been received and demodulated by the receiver, the Teensy decodes
the message, transmits a message to the Raspberry Pi (via bluetooth) instructing which
player hit the target, and sets the appropriate player signal pin high. The pins assigned
to the first and second player signals (pins 17 and 16 respectively) are meant to light up
three parallel LEDs in that respective player's color. Due to the fact that the Teensy is
unable to provide enough current to light up the three parallel, we have implemented
cascaded common source amplifiers to source the current necessary from the 5V line.

17

5.1.2 Mechanical Implementation

5.1.2.1 3D Model Design

Figure 5: Target 3D Model
For the target design, we wanted something that was sturdy and stood up on its own.
That was the reasoning for the flat bottom. The choice to make the top part round was
to resemble a circular target with the bullseye in the middle. When you put these two
designs together, we got our shape. We attached the PCB on top of the shelf inside of
the target.

We added a lit to hide all the guts inside. This lit was screwed on to the front. Since
changing the battery happens more often than changing the electronics inside, we
created a little battery cover inside of the lid so you can remove one screw and gain
access to the battery.

18

5.1.2.2 PCB Layout Design

Figure 6: Target PCB

When creating the PCB layout for the target circuit we decided to make it a two layer
board while making the top layer of the board 5V plane and the bottom layer the ground
plane. This allowed for easier routing for the two networks that had the most
connections. Because most of the circuit is DC we were not too concerned with a loss in
signal integrity due to separations in the ground plains or islands in the 5V plain. We
chose to use 0805 resistors and capacitors because they would be easier for people
who were inexperienced with soldering to put on and we had plenty of room due to the
other components. For the transistors used in our design we decided that the sot-23
package was what we have all used previously and are most familiar with. To make the
manufacturing of the prototype with the 3D printed target shell easier, it was decided
that it would be best to use wires to connect the LEDs and switch to the circuit board.

19

Figure 7: Physical Target Circuitry

5.2 Blaster Implementation

5.2.1 Hardware Implementation
Using the specifications of the IR receiver and Teensy Microcontroller, we were able to
build a schematic for the PCB of the blaster which can be see in the following photo
below.

20

Figure 8: Blaster Schematic

5.2.1.1 Teensy Microcontroller:
The first block most people notice is the Tennsy LC Microcontroller block. This part acts
as the brain of the blaster hardware. The code for the blaster is uploaded to this
component and based on the various inputs it receives from different components will
cause different impacts depending on what it received. These different interactions will
be explained in more depth in the following sections of the schematic review.

5.2.1.2 Power:
The first section to look at in the schematic is the power supply. In our design, we use a
9 volt battery to power everything. However as the battery is used up, the voltage will
slowly decrease from 9 volts. On top of that, the max voltage the teensy can handle is
around 5 volts and could be damaged if above that. In order to prevent this, a 5 volt
linear regulator was added to the board.

21

5.2.1.3 Limit Switches
The blaster uses two limit switches in its design for both the reload and trigger
functionality. On pin one of each limit switch is connected to a 5 volt power rail to act as
the power source for the limit switch. The normally open pin (Pin 2) of the limit switches
are then connected to their respective pins of the microcontroller. This means that when
the limit switch is pressed, this line will go high and trigger the microcontroller. Pin 2 also
has a pull down resistor on the line to prevent floating and make sure that the line does
not accidentally go high when the switch is not being pulled.

5.2.1.4 IR Emitter
The IR emitter in this case is a simple design. It receives a signal from the teensy
microcontroller when the trigger limit switch is activated. The teensy will then send a
PWM signal from the teensy into the Emitter which will then send a signal towards the
IR receiver on the target.

5.2.1.5 Ammo Indication
The ammo indication LEDs are controlled by a series of mosfet buffers. Since most pins
of the microscontroller can not source enough current in order to power the LEDs, a
mosfet buffer is needed to source the current. This buffer is made up of one n-channel
mosfet and one p-channel mosfet. The gate of the n-channel mosfet is connected
directly to the output of the microcontroller. The gate of the p-channel mosfet is
connected to the drain pin of the n-channel mosfet. When the n-channel mosfet is
activated, it also activates the p-channel mosfet. The 5 volt source connected to the
source of the p-channel mosfet is connected to the Ammunition LED indicator
connected to the drain pin.

22

5.2.2 Mechanical Implementation

5.2.2.1 3D Model Design

Figure 9: Blaster 3D Model
When it came to designing the blaster, we wanted a house to store the PCB. As you
can see in the center drawing, there are 3 holes that are used to mount the blaster’s
PCB into place. We designed this shoot easy to hold, and effective to aim. We wanted
to do this while also making sure that it was clearly not real. Next, we needed a place
to hold the battery and chose the handle as an effective location.

23

5.2.2.2 PCB Layout Design
The following photo is the final PCB layout for the project.

Figure 10: Blaster PCB

The PCB is roughly 81mm by 37 mm in size. The PCB for the blaster sits in the
rectangular portion of the blaster 3D model. There are then wires that run from the PCB
to the IR LED emitter, limit switches, battery switch, and the ammunition LED indicators.

24

Figure 11: Physical Blaster Circuitry

5.2.3 Blaster Software Implementation
The blaster processing was all done by the Teensy LC, and to have it operate as
intended, a program for the blaster would need to be designed. The program ended up
being a somewhat simple state-based machine, with states being based on how much
ammo the blaster has. Full ammo, 2 shots left, 1 shot left, and no ammo are the states.
During all states except the no ammo states, the blaster would shoot the IR code, and
then go down one stage. When the trigger is pulled while in the no ammo state, no code
would be sent, and the state would not move. Whenever the reload button was pushed,
the state would be returned to the full ammo state.

25

5.3 Software Implementation:

Figure 12: Database Schema

Starting with the backend of the application, we created a database schema then setup
and initialized a mySQL database off of that schema. Once that was completed, we
implemented a Springboot application server that would connect to the database we just
setup. Within the Springboot application, we created different HTTP endpoints for the
different screens implemented on the frontend of the application. For the frontend
application we began by creating mock ups of the different screens to be able to set up
all of the UI from our previous designs. Once we had the UI complete we implemented
the HTTP endpoints to add in the screens functionality, and then worked to fix sizing
issues and framing of the application into the tablet. Also in the final end product, we
didn’t need all of the screens we originally designed for on the frontend, so we did not
implement those. For the communication between the raspberry pi and the application
we originally decided on using websockets but after we integrated the sockets, we
couldn’t successfully connect and transfer data through websockets so we ended up
using more HTTP endpoints to cover the necessary communication.

26

6 Testing

6.1 Integration Testing
The critical integration paths that needed to be tested were the connections between
the targets/blasters to the raspberry pi server, the raspberry pi to the targets/blaster, and
the tablet to the raspberry pi. The testing to ensure connectivity was done by checking
that the bluetooth/wifi connections are made, and potentially adding startup sequences
that indicate connectivity between the devices.

6.1.1 Target Testing
Once the target was fully soldered we tested its functionality in a number of different
tests. The first was confirming that the 5V line was properly connected and that the
DC-to-DC converter was fully functional in stepping down the 9V input. This was to
make certain that the microcontroller would not be damaged when the system was
turned on.

The next test we performed was uploading code for decoding the received signal and
turning on the respective player’s indicator LEDs. To make matters simply we used the
infrared remote mentioned earlier to simulate the blaster emitting a decoded message
for either player. Doing this not only made the testing of the target easier through the
compact size of the remote and wider beam width of its infrared emitter, but it helped in
the blaster testing by confirming that the targets were functional and that if the blaster
failed to activate the target then it was an issue with the blaster.

The final test for the target was to confirm that the bluetooth was fully functional. This
was done by uploading the finished code that included the bluetooth messages that the
module should expect to receive and transmit. We then connected the bluetooth module
on the target to a phone app to confirm the ability with devices like the Raspberry Pi
being used for the central server. We sent a start up command that would be used to
begin the game. After this was done we used the remote to simulate player signals in
order to test that the target system was transmitting the correct strings that would tell
the server which player hit which target.

6.1.2 Blaster Testing
Once the target was fully soldered, it was ready to test the functionality of the different
components for both the hardware and the software. First up the hardware was tested
to make sure that everything functioned properly and after that the software testing
began to make sure that the hardware would not damage the microcontroller.

27

First up was testing the DC-DC converter stepping the 9 volts down to 5 volts. This was
tested at a range of voltages between about 9.5 volts to 5.5 volts to make sure it worked
at all values. This section worked perfectly fine which meant it was safe to connect the
microcontroller without damaging it.

Now that the microcontroller was attached we started testing the IR LED. First off we
needed to make sure that the teensy was reading the signal from the limit switch when it
was pressed. Once we saw it was receiving the signal, we then measured the IR LED
emitter pin and made sure that the correct signal was being sent.

Next up we needed to test the LEDs on the top of the blaster. First off we wanted to
make sure that every one of the LEDs lit up when the code was reset. We measured
each of the pins of the mosfet buffer to make sure that they were implemented properly.
We would then pull the trigger limit switch to make sure that the mosfet buffers would go
low one at a time and in each order. On top of that, we also needed to test the reload
code. Whenever the reload limit switch was hit, each of the mosfet buffers needed to go
back to reading 5 volts. Once we saw this, we knew that the entirety of the code was
functional with the hardware and was ready to be permanently connected to the
enclosure of the blaster.

6.1.3 Software Testing
Integration testing between the frontend and backend was initially handled manually
through a locally running server and a locally emulated tablet. This changed mid
semester to running the application on the physical tablet we have and the server on the
Pi. There was also testing done between the bluetooth listening service and the server
which ensured that communication was working and that the Pi could handle running
the server and service at the same time which each had multiple threads to manage.
The testing around the GUI brought up spacing issues with the emulator compared to
the physical tablet.

6.2 System Testing
One important system test is checking that the Pi receives the signal once you transmit
the IR signal from the transmitter. This involved setting up the initial bluetooth
connection between the Pi and the bluetooth module, sending a player signal to the
target in a place that the receiver could pick it up, and confirming that the bluetooth
module and microcontroller transmit the correct message back to the Pi to recognize the
hit and assign the player a point.

28

Another vital test that we performed was to confirm that the blaster and the target
communicated properly. This was done by using the individually tested blasters and
targets and having the blaster send its player signal in a place that the receiver can read
the message. If successful the indicator LEDs of the respective blasters will light up.
During our testing, we were able to calibrate the IR Emitter and receiver to work on a 15
foot range. At this range, there is a beam width of 6.3 degrees. The following photo
shows the range that all of the systems work together at.

Figure 13: Blaster and Target Range Drawing

With the bluetooth communication and target-blaster connectivity confirmed we were
able to test the game mode of our final system. For this we opened up the game’s app
and started the time. When shooting the target successfully we expected the correct
player’s indication lights to turn on and for the Pi to receive a bluetooth message which
it would then use to award that player a point.

7 Conclusion
Currently, our team has created a blaster that can send an encoded signal that is picked
up by the target. The target will only pick up that the blaster fired if IR LED was
accurately pointed at the target. The target then registers who hit it and relay that
information to the Pi. The Pi, using this information, sends this data to the server which
updates the score then the application requests relevant game information to display.

The biggest problem the hardware team encountered was the part shortage. Parts were
in short supply in online stores, and many of the ones left either had a long wait list or
were very expensive. We ordered the best parts at our disposal given the limited
choices for our project. In the future, our best option was to decide on parts sooner, as

29

one of the reasons we had less options was because we waited a bit longer than we
should have to order the components we needed for building. The other problem was
the time it takes to 3D print something. Since all of our items were big, it takes way
longer to print than anticipated because sometimes a print will get messed up and need
to be restarted.

8 Appendices

8.1 Operation Manual
Supplies

● 2 - 9 volt batteries
● Philips screwdriver
● 2 - Blaster Shells
● 4 - Target Shells
● Raspberry Pi
● Mobile interface (Tablet)

Target
1. Step 1 -> replace the battery of the target

a. Unscrew the screw holding the battery cover.
i. Indicated by figure 14

b. Take off the cover
c. Pull out the 9 volt battery
d. Detach the 9 volt battery
e. Connect a new 9 volt battery to the connector
f. Put the battery back in it’s housing
g. Replace the battery cover

30

2. Step 2 -> Turn on the Target
a. Flip the power switch from the O to the I

position
i. Found on the right side of the target
ii. Look at figure 15

b. Check that the target is on
i. The green LED above the target is

on
ii. If LED does not turn on, replace the

battery by following step 5

Blaster
3. Step 3 -> Replace Blaster battery.

a. Start by undoing the screw at the bottom of the blaster on figure 16
b. Remove the battery cover
c. Pull out the old 9 Volt battery
d. disconnect the old battery
e. Replace with a new battery
f. Push battery back into its slot
g. Replace the battery cover
h. Redo the screw to hold the battery

back into place

31

4. Step 4 -> Turn on the blaster
a. Flip the power switch from the O

to the I position
i. Found on the bottom of

the blaster under the
barrel

ii. This is the switch in
figure 17

b. Check that the target is on
i. Green LED in the front by

the switch is lit
ii. 3 blue LEDs on the top of

the blaster are lit
iii. If it did not turn on,

replace the battery using
step 1

5. Step 5 -> Shooting the blaster
a. Aim at the target that you want to hit
b. Pull the trigger
c. See figure 18
d. The LED at the top of the blaster indicates the ammo left.

i. You start out with 3 shoots
ii. If fired while out of ammo, the 3 LED will blink

1. Go to step 4 to reload inorder to fire some more
6. Step 6 -> Reload the blaster

a. Pull back the back
i. See figure 19
ii. All 3 of the LED will light back up if properly reloaded
iii. It will not reload until the back goes back to its starting position

32

Raspberry Pi
1. Connect to “RaspRouter” wifi network on computer
2. Open two terminals
3. SSH into the Raspberry Pi twice (ssh pi@192.168.4.1) (password: raspberry1)

a. cd to the Pi’s desktop
b. Run server on one (java -jar server.jar)
c. Run the bluetooth service on the other (after targets are on) (python

bluetooth_listener_service.py)
Android Application

1. Open up the application on the tablet
2. Create new profiles if necessary

a. Select new profile from the home screen
b. Type in a name and select a picture and submit

3. Play game
a. Select player 1 from the list
b. Tap the player 2 icon at the bottom right
c. Select player 2 from the list
d. Press the start game button
e. Use the blasters to shoot at the targets to accumulate points within the

time limit.

8.2 Initial Versions
We initially designed all of our 3D shells with only light consideration for the size of our
3D printer. This resulted in the blaster being too big for the Ender 3 that we used. In
order to fix this, we made the barrel its own component. This resulted in a problem with
securing it in a straight position. The solution to secure it was to add pegs on either
side of the barrel to hold it from wiggling up and down.

On the software side, we originally had the websockets as the form of communication
between the application and the raspberry pi for in-game communication to update the
score. After implementing this, we tested the communication and could never find a
stable connection and successfully transmit data back and forth between the two. With
this, we decided to switch to using more HTTP endpoints to achieve this necessary
communication. This way ended up working much more effectively and steadily
compared to the websocket implementation.

33

Another failure in our project occured in the first revision of the target’s schematic and
PCB. There were three main issues: two from the schematic and the other on the PCB
layout. The first problem was that in the cascaded amplifier circuit we accidentally made
the two transistors both n-channel mosfets. We wanted the second one to be a
p-channel mosfet, so because of this mistake the buffer circuit drew less current than
we were expecting and made it use the wrong mosfet logic. Neither of these issues
were too bad to be fixed. We reduced the current limiting resistor so that more current
was able to be drawn and made the light up code active low instead of the active high
that we planned on. When we wanted the lights to be off the microcontroller pin needed
to be high and when we wanted them to be on the microcontroller would pull the pin low.

The next problem on the first revision was that there were no pull down resistors. We
should have added pull down resistors at the gate of the n-channel mosfet that was
connected to the microcontroller. We initially believed that having the microcontroller
pull low would create a digital ground and that would be good enough. This did not end
up being the case so we added the pull down resistors in the second revision.

34

The third issue was that the footprint for the bluetooth module was accidentally flipped
so the pins were not connected to correctly. All of the problems from the first revision
were addressed in the second revision along with adding test points and changing the
shape of the PCB. The PCB was shaped as a circle so that the LEDs could line up
against the holes for the target and allow the mounting of the PCB to be behind the face
of the 3D shell.

The fourth issue we had was in the fabrication process of the blaster PCB. When the
original file was made, the board outline was placed on the wrong layer. This caused
about 13mm on the right side of the board to not be manufactured. Because of this, the
LED connector and the ground plane were cut off. Some components were not properly
functioning due to this so some modifications on the initial board revision needed to be
made. While a new board was ordered, it did not arrive in time for this document. It wil
however be arriving this weekend so it can be prepared for the presentation day.

35

8.3 Other Considerations
During this project, we learned about the process of how to design, test, and print out
3D components. Some of the skills learned here was the tolerance of 3D prints, buffer
space between parts, and how to fasten parts together. We also learned about
conserving filament while testing. Some of the techniques that we learned was just how
thin of walls, floors and low the infil could be while still printing out a component.

